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An important necessary condition for transverse phase space damping in the op-
tical stochastic cooling with transit-time method is derived. The longitudinal and
transverse damping dynamics for the optical stochastic cooling is studied. We also
obtain an optimal laser focusing condition for laser-beam interaction in the correc-
tion undulator. The amplification factor and the output peak power of the laser
amplifier are found to differ substantially from earlier publications. The required
power is large for hadron colliders at very high energy.

1 Introduction

Transit-time optical stochastic cooling (OSC) was first introduced by Zolotorev
and Zholents1, where the optical frequency of ∼ 3 × 105 GHz (λ ∼ 1 µm) is
used. This provides a bandwidth more than ten thousand times than microwave
stochastic cooling2. The OSC can be used in low energy electron rings to provide
high brightness beams. It can also be used in proton collider rings to increase
luminosity by counteracting intra-beam scattering.

In Ref. 1, the horizontal cooling decrement is presented as
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where, in their notations, D0 and −η′
0 represent the dispersion and dispersion

gradient at the 2nd undulator. Thus, there is no horizontal cooling if η′
0 = 0,

which can hardly be correct. In order to understand OSC, we rederived all the
equations of the dynamic again. The detail is given in Ref 3.

2 Transit-time OSC

In the transit-time OSC, the beam particles pass through a first undulator where
photons are emitted. After amplification by a laser amplifier, these photons meet
the beam particles again inside the second undulator and interact with them by
correcting their momentum offset. In order to receive the right corrections, the
phases of the beam particles are properly adjusted by allowing the beam particles
traveling through a bypass as shown in Fig. 1.

Consider the i-th beam particle with a momentum deviation δi = ∆Pi/P , and
the betatron phase space coordinates (xi1, x

′
i1, zi1, z

′
i1) at the first undulator. In the

Frenet-Serret coordinate system, the path length of the test particle in the bypass
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Figure 1. The module for transit time OSC, which consists of two undulators, a laser amplification
system, and a by-pass for the beam particles.
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where x̂, ŝ and ẑ form a curvilinear coordinate system with a horizontal bending
radius ρ, the coordinates x̃i and z̃i are the deviations from a reference orbit, and
s is the longitudinal coordinate along the reference orbit. We have also assumed
x̃′

i � 1 and z̃′i � 1 to obtain the last approximate equality. For a bypass with planar
geometry, the transverse displacement of an orbiting particle is given by x̃i(s) =
xco(s)+M11(s, s1)xi1 +M12(s, s1)x′

i1 +D(s)δi , where M11(s, s1) and M12(s, s1) are
transport matrix elements of the Hill’s equation from the first undulator at s1 to
the second undulator at s2 via the beam bypass, xco(s) is the closed orbit around
the reference orbit, and D(s) is the dispersion function. The path length for the
i-th particle in the bypass region becomes

`i = `0 + xi1I1 + x′
i1I2 + δiID, (3)

where xi1, x
′
i1 are the conjugate phase space coordinates for the i-th particle at the

location s1, and the integrals I1, I2, and ID are
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The on-momentum particle arrives at the second undulator and sees exactly the
zero crossing of the electric field of the photons. The i-th particle, however, arrives
with a time delay and therefore at a phase

∆φi = k(`i − `0) = k(xi1I1 + x′
i1I2 + δiID) (5)

from the zero-crossing of the electric field, where k is the wavenumber of the pho-
tons. The correction through the electric field is5

∆δi = − sgn(ID)G sin(∆φi) , (6)
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where the gain factor is

G =
q〈E2〉NuλuK[JJ ]

2γEb
, (7)

K = qBuλu/(2πmc) is the strength parameter of the undulator with field strength
Bu, wavelength λu, and number of period Nu, q is the charge of the beam particle
with nominal energy Eb = γmc2 and rest mass m, E2 is the electric field amplitude of
the electromagnetic wave and 〈 〉 represents its average along the second undulator,
c is the velocity of light, [JJ ] = J0(1

2ξ) − J1(1
2ξ) with ξ = K2/(2 + K2), and J0

and J1 are Bessel functions. Through the dispersion D2 at second undulator, there
are horizontal corrections ∆xi = −D2∆δi, ∆x′

i = −D′
2∆δi. Thus there is also

horizontal cooling.

3 Damping Decrements

The correction in Eq. (6) is the result of the interaction of the photons emitted by a
beam particle on the same beam particle. This interaction is coherent and produces
a damping. However, this particle also interacts with the photons emitted by other
beam particles. This interaction is incoherent and produces a growth instead.
Adding up cooling and anti-cooling, the resulting longitudinal damping decrement
is
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is the total thermal energy of the system. Here, a Gaussian momentum distribution
has been assumed for the beam particles at the first undulator with σδ being the
rms momentum spread. Similarly, the horizontal damping decrement is
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Thus, we arrive at the necessary condition of horizontal damping: I⊥ > 0. Notice
that transverse cooling can still be possible even when D2 = 0.
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4 Cooling Dynamic

From the damping decrements, it is easy to compute the rates at which the trans-
verse emittance and the momentum are damped:
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, (13)
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In the special case of ID = I⊥, there is equal gain in both the transverse and
longitudinal directions. We can then combine Eqs. (13) and (14) to obtain
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where
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The optimum gain is

du

dt
= − 2k2I2

D

vNsT0
u2e−2u , (17)

which occurs when

Gopt =
2kID

vNs
ue−u . (18)

The cooling of the thermal energy u at optimized gain is shown in Fig. 2 starting
from the initial value of u0 = 3. Because of the u2e−2u factor, the cooling slows
down as time progresses. When u ≤ 1, the cooling process behaves like u = 1

t and
becomes very inefficient. However, the OSC takes place through Eq. (6), which is
proportional to sin(∆φi), and the correction will be in the wrong direction if the
phase shift |∆φi| > π/2. Thus, for a large thermal energy, like u0 = 3, only the
part of the beam sufficiently close to the on-momentum particle will be cooled while
the rest will be heated instead. To ensure OSC, we must make sure that all the
particles in the beam (usually 95% is assumed) be within the π/2 phase shift. Since
a bypass can be designed with very small I1 and I2, this phase shift requirement
translates into

u = u0 ≈ 1
2
(kIDσδ)2 ≤ π2

48
. (19)

As a result, OSC at optimum gain factor is rather inefficient because the emittance
of a cold beam decreases inversely with the cooling time. As will be seen below,
OSC at small gain turns out to be more efficient. Although the cooling represented
by Eq. (17) is not exponential, an initial cooling time can nevertheless be defined
by

τcool = − u

du/dt

∣∣∣∣
u=u0

≈ NsT0

4
e2u0

u0
(20)

for an optimum gain factor.
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Figure 2. The cooling of the thermal energy u from the initial value u0 = 3, obtained by solving
the Eq. (17) is shown as a function of time t with optimal gain factor.

5 Peak Power

After amplified by the laser amplifier and focused to the middle of the second
undulator, the electromagnetic pulse of the emitted photons at the waist has a
time duration of ∆tR = Nuλ/c, an electric field amplitude E2 and an area of cross
section A2. The total energy of the electromagnetic pulse is

W2 =
1
2
ε0E2

2A2c∆tR , (21)

where ε0 is the electric permittivity of free space. The output peak power of the
laser amplifier is therefore

P̂2 =
W2

∆tR
Ns =

1
2
ε0E2

2A2cNs , (22)

where

Ns = NB
Nuλ

2
√

6cστ

(23)

is the number of particles in a sample within a bandwidth of ∆ω|FWHM = ω/Nu, and
στ is the rms length of a bunch containing NB beam particles to be cooled. Here, we
have assumed 100% photon transmission in the optical amplifier, and assume that
the bandwidth of the laser amplifier is larger than that of the undulator radiation.

To relate the peak output power to the gain factor G defined in Eq. (7), we
need to compute the electric field amplitude averaged along the second undulator.
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Since the energy of the electromagnetic pulse must be the same as it travels down
the second undulator, we must have

E2(s)A2(s) = E2A2 . (24)

On the other hand, diffraction requires the cross-sectional area

A2(s) = A2

(
1 +

s2

Z2
R

)
, (25)

where ZR = σr/σr′ , the ratio of the transverse size of the electromagnetic wave to
its divergence, is called the Rayleigh length, which just plays the role the β∗, the
minimum betatron function in the situation of a particle beam. We therefore have

〈E2〉 =
2E2

Nuλu

∫ Nuλu/2

0

ds√
1 + (s/ZR)2

, (26)

where Nuλu is the length of the second undulator. Combining Eqs. (7), (22), and
(26), we arrive at the peak power for a given gain factor,

P̂2 = G2 Ns(Eb/q)2

Z0ξNu[JJ ]2
F2 , (27)

where Z0 is the impedance of free space,

F2 =
A0/A2

8[ln(A0/A2 +
√

1 + (A0/A2)2)]2
, (28)

A2 = 2πσ2
r is the photon beam area at the waist of the second undulator6 as

defined in Eq. (21), and A0 = Nuλuλ/4. Minimum laser amplifier occurs7 when
A2 = 0.3012A0, where F2 = 0.1132.

The average laser power is equal to the peak power multiplied by the duty factor,
i.e.,

〈P 〉2 = P̂2
nb2

√
6στ

T0
= G2 (Eb/q)2

Z0ξ[JJ ]2
NBnbλ

C
F2 , (29)

where nb is the number of bunches, στ is the rms bunch length in time, and C is
the circumference of the storage ring. Note that the average power is proportional
to the total number of particles in the storage ring.

5.1 Peak Laser power for optimal gain

Substituting the optimal gain of Eq. (18) into Eq. (28), we obtain the output peak
power of the laser amplifier given by

P̂2 =
Ns (Eb/q)2

Z0ξ[JJ ]2Nu

(
2kID

v Ns
ue−u

)2

F2 , (30)

Since the cooling rate is inversely proportional to Ns, the peak power for an opti-
mized cooling of Ns particle is also inversely proportional to Ns. Because of the
stability condition of u ≤ π2/48 in Eq. (19), the peak power is highly reduced.
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Application to Hadron Machines

Figure 3 shows the peak power versus γ (beam energy) for proton storage rings at
optimal gain. The laser wavelength is taken to be λ = 1 µm and each undulator has

Figure 3. The peak laser amplifier power vs γ for an optimal gain in the optical stochastic cooling
for a proton storage ring (TEVATRON). The parameters for the TEVATRON are σ` = 0.37 m,
σδ = 1.3 × 10−4, nb = 36 bunches, each containing NB = 2.7 × 1011 particles, Eb = 1 TeV, the
mean radius of the TEVATRON of 1000 m, and Bu = 10 T. The initial cooling time is given by
Eq (20) with u0 = π2/48 or τcool ≈ 57 s.

Nu = 10 periods. Most parameters correspond to the TEVATRON at Fermilab:
NB = 2.7 × 1011 particles, rms bunch length σ` = 0.37 m, and σδ = 1.3 × 10−4.
With the TEVATRON revolution period of T0 = 20.1 µs, the initial cooling time is
57 s given by Eq. (20). The magnetic field of the undulator varies from 1 to 10 T.

For a fixed laser wavelength and the undulator magnetic field, the undulator
parameter is obtained by solving the cubic equation:

λ =
πmc

2qBuγ2
K(2 + K2) , (31)

from which the undulator period λu can be solved and plotted in Fig. 3. The self-
consistent solution gives K ∼ γ2 at low energies and P̂2 ∼ (Eb/q)2

ξ ∼ (Eb/q)2

K2 ∼ 1
γ2 ;

i.e., it requires a large laser power to compensate the small coherent radiation flux
for hadron beams at low energies. At high energies, the particle beam is stiff and
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Figure 4. The peak laser amplifier power vs γ for optimal gain in the optical stochastic cooling for
electron storage rings. The parameters for the electron storage ring are σ` = 1 cm, σδ = 1.3×10−4,
NB = 1.0 × 1011, and Bu = 1.0 T.

the number of photons emitted in the solid angle λ/(Nuλu) becomes saturated
(ξ → 1). The output power increases as γ2 instead. The position of the minimum
laser power can be easily calculated to be

γmin =

√
4
√

2π

3
√

3

√
mc

qBuλ
. (32)

The TEVATRON at 1 TeV happens to be near the minimum of the power-vs-gamma
curve and is therefore favored8 by OSC. The undulator period of λu = 1.93 m
(Bu = 6 T) is long enough for superconducting undulators. The Relativistic Hadron
Collider (RHIC) lies on the left side of the minimum and has its output amplifier
power scale as γ−2(m/q)4. The Very Large Hadron Collider (VLHC) lies on the
right side of the minimum and has its output power scale as (mγ/q)2.

Application to Electron Machines

Figure 4 is a similar plot for electron rings. Because of the small electron mass,
there is no need to consider high magnetic field undulators and we set the magnetic
field at Bu = 1 T. The bunch parameters are NB = 1.0 × 1011, σ` = 1 cm, and
σδ = 1.3×10−4. Besides laser wavelength λ = 1 µm, we also include λ = 5, 20, and
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100 µm, where the corresponding numbers of sampling particle are Ns = 2.0× 107,
1.0 × 108, 4.1 × 108, and 2.0 × 109 respectively. The initial cooling time for the
optimal gain given by Eq. (20) is τcool = 1.8NsT0, which depends on the revolution
period T0.

When λ = 1 µm, the minimum peak power occurs at γmin = 76.3 or Eb =
39.0 MeV; i.e., nearly all electron storage rings lie on the right side of the minimum.
However, because of the (m/q)2 factor, the output power of the amplifier is very
much reduced. That does not implies that OSC favors electron rings of high energies
because the radiation damping rate increases rapidly with energy. To be effective,
the OSC cooling rate, discussed in the last paragraph, has to be faster than the
radiation damping rate of the electron ring.

Now, we consider a possible example of converting the Cooler Ring at the Indi-
ana Univeristy Cyclotron Facility (IUCF) to an electron ring and OSC is applied at
the Ti-Saphire laser wavelength λ = 0.78 µm with Nu = 10 and λu = 5 cm. Setting
an initial cooling time of 0.10 s, we find Ns = 1.92 × 105. Since the rms bunch
length is 3.6 cm with the rf system, we find the number of particles in a bunch
NB = 4.36 × 109. At Eb = 500 MeV, the required laser peak power is P̂ = 39 W.
The peak power is much larger than that of Fig. 4 because the number of the sam-
pling particle is much smaller in this example. The natural horizontal emittance and
the OSC-equilibrium emittance are plotted in Fig. 5 as functions of beam energy.
Other parameters used in the plots are ring circumference C = 85.03 m, bending
radius ρ = 2.44 m, momentum compaction αc = 0.04938, rf harmonic h = 15, and
a bucket-to-bunch-height ratio of 40. We also note that the OSC damping is almost
or more than an order of magnitude when the electron energy is below 500 MeV.
However, at higher energies, OSC damping is completely inefficient because the
rapidly increasing radiation damping rates. As a whole, applications of OSC to low
energy electron storage rings can be useful for attaining high brightness electron
beams.

6 Laser Power for Low-Gain Regime

At an optimal gain, the laser power requirement is usually high (see Fig. 3), and
the damping dynamics is not necessarily the most favorable for beam cooling. It
would be useful to consider the OSC in the low-gain regime. As an example, if
the second undulator location is designed to be non-dispersive, i.e. D2 = PD2 = 0,
the betatron cooling and heating vanish. The OSC becomes a one-dimensional
momentum cooling device and the cooling bypass design is simplified. Let ux =
1
2k2(β1I

2
1 − 2α1I1I2 + γ1I

2
2 )εx, and uδ = 1

2k2I2
Dσ2

δ . In the low-gain regime, the
incoherent heating term is now small and can be neglected. The damping equation
becomes

duδ

dt
= −2GkID

T0
e−uxuδe

−uδ . (33)

Since uδ ≤ π2/48 is small, the damping is almost exponential and becomes more so
as the cooling proceeds and will continue until the cooling force is balanced by the
heating forces coming from rf noise, intra-beam scattering, etc. This is highly in
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Figure 5. The equilibrium electron emittance for a cooling time of 0.1 s is shown as a function of
the electron beam energy.

contrast with the cooling at optimum gain-factor discussed in Sec. III.C.2, where
the cooling process becomes more and more inefficient as the beam is cooled. With
ux = 0, the cooling time is

τcool ≈ eu
δ

2GkID
T0 . (34)

The resulting peak power is

P̂2 =
(

T0

τcool

)2
Ns (Eb/q)2 e2uδ

Z0Nuξ[JJ]2(2kID)2
F2 , (35)

The average power of the laser amplifier is

〈P 〉2 =
(

T0

τcool

)2(
nbNBλ

C

)
(Eb/q)2 e2uδ

Z0ξ[JJ]2(2kID)2
F2 . (36)

Note that the average power depends on the total number of particles nbNB in the
ring and the square of the energy over charge (Eb/q)2.

Figure 6 shows the average power requirement versus cooling time in the low
gain regime, where the undulator parameters are λ = 1.0 µm, Nu = 10, and
the undulator magnetic field varying from 1 T to 10 T. The corresponding beam
parameters are σ` = 0.37 m, σδ = 1.3 × 10−4, nb = 36 bunches each containing
NB = 2.7 × 1011 protons at Eb = 1 TeV for the TEVATRON whose mean radius
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Figure 6. The laser amplifier power in the low gain regime for the TEVATRON at 1 TeV and the
RHIC at 100 GeV/amu. The laser wavelength is λ = 1µ, and the undulator parameters are Nu =
10 with the magnetic field strength Bu listed in the graph. The corresponding beam parameters
are σ` = 0.37 m, σδ = 1.3×10−4, and nb = 36 bunches, each containing NB = 2.7×1011 particles,
at Eb = 1 TeV for the TEVATRON; and στ = 2 ns, σδ = 1.0 × 10−3, nb = 60 bunches, each
containing NB = 1.0 × 109 particles, Eb = 100 GeV/nucleon for gold ion, and the circumference
of 3833.85 m for the RHIC.

is 1 km, while στ = 2.0 ns, σδ = 1.0 × 10−3, nb = 60 bunches each containing
NB = 1.0 × 109 gold ions (A = 197 and Z = 79) at Eb = 100 GeV/nucleon for the
RHIC whose circumference is 3833.85 m. We see that for a cooling time of 1200 s
which is fast enough to counteract intra beam scattering, the average output power
for the TEVATRON is only 16 W when superconducting undulators at Bu = 6 T
is used. On the other hand, the average output power for the RHIC is more than
1000 times larger. Because γ is one order of magnitude smaller than that of the
TEVATRON, the undulator period becomes λu = 2.3 cm, two orders of magnitude
smaller. This implies that superconducting undulators may not be used and only
1 T undulators are possible. The output power for the RHIC application is therefore
increased at least one more order of magnitude.

Note that when the laser wavelength is chosen to be λ = 1 µm for the RHIC,
the undulator period is λu = 2.3 cm, which may be difficult to attain a high field
undulator magnet. The wiggler number becomes very small, and the required laser
amplification power becomes very large (see Fig. 6). If there is a longer wavelength
high bandwidth laser, e.g. λ = 10µm, the undulator period becomes 23 cm, and
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Figure 7. The laser amplifier power in the low gain regime for the RHIC at 100 GeV/amu with
the laser wavelength of λ = 10µ and the undulator parameters are Nu = 10. The magnetic field
strength Bu is listed in the graph. The corresponding beam parameters are στ = 2 ns, σδ =
1.0 × 10−3, nb = 60 bunches, each containing NB = 1.0 × 109 particles, Eb = 100 GeV/nucleon
for gold ion, and the circumference of 3833.85 m.

the required laser amplification power will be greatly reduced as shown in Fig. 7.
Although it may still require 80 W of laser amplification power to attain a 1 hr
cooling time (for Bu = 6 T), this is dramatically improved in comparison with the
1000 W requirement shown in Fig. 6.

7 Conclusion

In this paper, we derived a necessary condition for the transverse phase space
damping in the optical stochastic cooling. We have also explored the damping
rates, the amplification factor, cooling dynamics, and the required peak and average
output power of the laser. We derived an optimal laser focusing condition for the
charged particle beam and the laser beam interaction in an undulator. With the
available optical amplifiers at the present, it is rather impractical to use the optical
stochastic cooling method to cool proton and heavy ion beams at very high energies.
However, we find that the cooling method may be beneficial to low energy electron
beams, and around 1 TeV proton beams.

We also point out the difficulties of OSC with optimal gain condition. At the
optimal gain, the required laser power is usually very large. As the beam is cooled,

osc-talk: submitted to World Scientific on October 4, 2002 12



it is difficult to change the charged particle optics for a larger kID to compensate
the decrease in emittances. The best solution is to cool beams in the low gain
regime, where the heating term may be negligible. For the TEVATRON, it seems
to be feasible to use the Ti-Saphire λ = 0.78 µm for OSC at 1 TeV. One needs a
shorter wavelength broadband laser for VLHC, and a long wavelength broadband
laser for the RHIC.

In actual implementation of the OSC, one should also consider the efficiency
of laser pumping and optical transmission, the linearity of the laser amplification,
noise, etc. These problems can be considered if there is a realistic project to carry
out experimental tests.
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